A thermodynamic approach to predict apparent contact angles on microstructures using surface polygonal maps.

نویسنده

  • A Calvimontes
چکیده

The thermodynamic model of wetting developed and tested in this work allows the understanding and prediction of apparent contact angles on topographic maps of real and digitally-generated microstructures. The model considers the solid component as a set of finite areal elements in the form of a polygonal map. Liquid and gas components are instead evaluated as continuous and incompressible volumes. In this study, the concept of the wetting topographic spectrum (WTS) is proposed to simulate the changes in the liquid-solid contact areas and of the interfacial energies while wetting the microstructure from the top to the bottom of the topographic map, passing through various states of metastable equilibrium, to find a stable configuration. The model was successfully applied to predict the wetting apparent contact angles on randomly micro-structured polypropylene (PP) surfaces and on a superhydrophobic and superoleophobic transparent polydimethylsiloxane (PDMS) microstructure previously presented as a communication in this journal by other authors. The method presented in this study can be used to design and predict the geometry of microstructures with special wetting characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane) Microstructures with Velocity-Dependent Contact Angles

Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS) microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 ...

متن کامل

A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.

The Cassie-Baxter model is widely used to predict the apparent contact angles obtained on composite (solid-liquid-air) superhydrophobic interfaces. However, the validity of this model has been repeatedly challenged by various research groups because of its inherent inability to predict contact angle hysteresis. In our recent work, we have developed robust omniphobic surfaces which repel a wide ...

متن کامل

Novel Poly (glycerol-adipate) Polymers Used for Nanoparticle Making: A Study of Surface Free Energy

Nanoparticles made of biodegradable polymers has become the best approach for nanoparticle making due to their compatibility with the human body. New glycerol adipate polymers with hydroxyl group substituted with different percent of acyl group, sited as figures within the abbreviated name in the text, and triptophan were synthesized and proposed to be used in the preparction of dexamethason ph...

متن کامل

Novel Poly (glycerol-adipate) Polymers Used for Nanoparticle Making: A Study of Surface Free Energy

Nanoparticles made of biodegradable polymers has become the best approach for nanoparticle making due to their compatibility with the human body. New glycerol adipate polymers with hydroxyl group substituted with different percent of acyl group, sited as figures within the abbreviated name in the text, and triptophan were synthesized and proposed to be used in the preparction of dexamethason ph...

متن کامل

Quantification of feather structure, wettability and resistance to liquid penetration.

Birds in the cormorant (Phalacrocoracidae) family dive tens of metres into water to prey on fish while entraining a thin layer of air (a plastron film) within the microstructures of their feathers. In addition, many species within the family spread their wings for long periods of time upon emerging from water. To investigate whether wetting and wing-spreading are related to feather structure, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 10 41  شماره 

صفحات  -

تاریخ انتشار 2014